Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 44, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589930

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Assuntos
Alphacoronavirus , Proteínas do Nucleocapsídeo , Animais , Suínos , Alphacoronavirus/metabolismo , Interferons/genética , Proteína DEAD-box 58/metabolismo
2.
Vet Microbiol ; 292: 110036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458048

RESUMO

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Assuntos
Infecções por Rotavirus , Doenças dos Suínos , Animais , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Membrana Celular , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/metabolismo
3.
Vet Microbiol ; 288: 109953, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118371

RESUMO

The discovery of antiviral molecules is crucial for controlling porcine deltacoronavirus (PDCoV). Previous studies have provided evidence that the IFN-inducible transmembrane protein 3 (IFITM3), which is coded by an interferon-stimulated gene, prevents the infections of a number of enveloped viruses. Nevertheless, the involvement of IFITM3 in PDCoV infection remains unexplored. In this study, it was observed that the overexpression of IFITM3 successfully restrictes the infection of PDCoV in cell cultures. Conversely, the suppression of IFITM3 facilitates the infection of PDCoV in IPI-2I and IPEC-J2 cells. Further studies revealed that IFITM3 limits the attachment phase of viral infection by interacting with the S1 subunit of the PDCoV Spike (S) protein. In addition, IFITM3 is verified as a member of the CD225 family, the GxxxG conserved motif of this family is important for it to limit PDCoV infection. In summary, this study reveals the mechanism of IFITM3 as an antiviral molecule to inhibit PDCoV infection, and also provides theoretical supports for screening effective anti-PDCoV drugs.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/genética , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Antivirais/metabolismo
4.
Viruses ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140647

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging porcine intestinal coronavirus that can cause acute diarrhea, vomiting, rapid weight loss, and high mortality in newborn piglets. Cholesterol 25-hydroxylase (CH25H) is a molecular mediator of innate antiviral immunity and converts cholesterol to 25-hydroxycholesterol (25HC). Previous studies have reported that CH25H and 25HC have an antiviral effect against multiple viruses. However, the interplay between SADS-CoV infection and CH25H or 25HC is still uncertain. Here, we found that CH25H and its enzymatic product 25HC restrained SADS-CoV replication by blocking membrane fusion. Our results show that CH25H was upregulated by SADS-CoV infection in vitro and in vivo, and that it was an IFN-stimulated gene in porcine ileum epithelial cells. Moreover, CH25H and CH25H mutants lacking catalytic activity can inhibit SADS-CoV replication. Furthermore, 25HC significantly suppressed SADS-CoV infection by inhibiting virus entry. Notably, we confirmed that CH25H and 25HC blocked SADS-CoV spike protein-mediated membrane fusion. Our data provide a possible antiviral therapy against SADS-CoV and other conceivable emerging coronaviruses in the future.


Assuntos
Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Animais , Suínos , Glicoproteína da Espícula de Coronavírus/genética , Fusão de Membrana , Replicação Viral
5.
J Fungi (Basel) ; 9(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37998887

RESUMO

The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 µmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.

6.
Front Microbiol ; 14: 1233512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560516

RESUMO

Hypsizygus marmoreus is one of the main industrially cultivated varieties of edible fungi, with a delicious taste and high nutritional value. However, the long harvest period of 130-150 days greatly limits its large-scale expansion. This study aimed to investigate the effects of central carbon metabolism (CCM) on the mycelial growth performance and fruiting body formation of H. marmoreus. Nine edible fungi with different harvest periods were collected and used to evaluate their intracellular carbon metabolic differences in the CCM, which revealed that the imbalanced distribution of intracellular carbon metabolic levels in the CCM of H. marmoreus might be one of the key factors resulting in a slow mycelial growth rate and a long harvest period. Further analysis by three strategies, including metabolomics, adaptation of different carbon sources, and chemical interference, confirmed that low carbon flux into the pentose phosphate pathway (PPP) limited the supply of raw materials, reduced power, and thus influenced the mycelial growth of H. marmoreus. Furthermore, four transformants with increased expression levels of glucose-6-phosphate dehydrogenase (G6PDH), a key rate-limiting enzyme in the PPP of H. marmoreus, were developed and showed more extracellular soluble protein secretion and higher sugar assimilation rates, as well as improved mycelial growth rates in bottle substrate mixtures. Finally, cultivation experiments indicated that the maturation periods of the fruiting body with ~4-5 days in advance and the maximum fruiting body yield of 574.8 g per bag with an increase of 7.4% were achieved by improving the G6PDH expression level of the PPP in H. marmoreus. This study showed that CCM played an important role in the mycelial growth and development of H. marmoreus, which provided new insights for future advancements in cultivating and breeding edible fungi.

7.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888569

RESUMO

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Papaína , Papaína/metabolismo , Proteína Beclina-1 , Peptídeo Hidrolases/metabolismo , Autofagia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
Animals (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359075

RESUMO

Swine enteric disease is the predominant cause of morbidity and mortality, and viral species involved in swine enteric disease include rotaviruses and coronaviruses, among others. Awareness of the circulating porcine rotavirus group C (PoRVC) in pig herds is critical to evaluate the potential impact of infection. At present, due to the lack of disease awareness and molecular diagnostic means, the research on RVC infection in China is not well-studied. In this study, diarrhea samples collected from pig farms were detected positive for RVC by PCR, and the full-length RVC was not previously reported for Chinese pig farms. This rotavirus strain was designated as RVC/Pig/CHN/JS02/2018/G6P6. A natural recombination event was observed with breakpoints at nucleotides (nt) 2509 to 2748 of the VP2 gene. Phylogenetic analysis based on nsp1 revealed that a new branch A10 formed. Collectively, our data suggest a potentially novel gene recombination event of RVC in the VP2 gene. These findings provide a new insight into the evolution of the rotavirus.

9.
Front Microbiol ; 13: 970520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118239

RESUMO

Quorum sensing (QS) is a cell-to-cell communication in bacteria that couples gene expression through the accumulation of signaling molecules, which finally induce the production of several virulence factors and modulate bacterial behaviors. Plants have evolved an array of quorum sensing inhibitors (QSIs) to inhibit the pathogens, of which aromatic compounds are widely recognized. The essential oil of Melaleuca bracteata was found to exhibit anti-quorum sensing activity, and its principal bioactive component, methyleugenol (ME), had been isolated in our previous study. Here, ME interfered effectively with the QS-regulated processes of toxin secretion in Chomobacterium violaceum ATCC31532, resulting in strong inhibition of QS genes, cviR, cviI, vioA-E, hmsHNR, lasA-B, pilE1-3, and hcnABC, leading to impaired virulence, including violacein production, biofilm biomass, and swarming motility. The accumulation of the signal molecule (N-hexanoyl-DL-homoserine lactone, C6-HSL) in C. violaceum declined upon treatment with ME, suggesting an inhibition effect on the C6-HSL production, and the ME was also capable of degrading the C6-HSL in vitro assay. Molecular docking technique and the consumption change of exogenous C6-HSL in C. violaceum CV026 revealed the anti-QS mechanism of ME consisted of inhibition of C6-HSL production, potentially via interaction with CviR and/or CviI protein. Collectively, the isolated ME, the principal active components of M. bracteata EO, exhibited a wide range of inhibition processes targeting C. violaceum QS system, which supports the potential anti-pathogenic use of M. bracteata EO and ME for treatment of pathogen contamination caused by bacterial pathogens.

10.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2196-2204, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043827

RESUMO

Pseudostellaria heterophylla is authentic traditional Chinese herbal medicine in Fujian Province. P. hete-rophylla suffers from serious consecutive monoculture problems. Fallow can alleviate such problems, but the mecha-nism is still unclear. In this study, high-throughput sequencing was performed to analyze the changes in soil microbial community structure and diversity in the P. heterophylla soil at different fallow ages as well as their relationships with soil physicochemical properties and phenolic acids. The results showed that fungal community diversity decreased but bacterial community diversity increased in fallow soils compared with the control soil of P. heterophy-lla. For bacterial communities, the relative abundance of Acidobacteria increased, while that of Proteobacteria and Actinobacteria decreased in fallow soils. For fungal communities, the relative abundance of dominant phyla had no significant difference between fallow and control soils. Soil acidity and organic matter content showed a trend of weakening and decreasing, respectively, with the increases of fallow years. In addition, with the increases of fallow years, the content of phenolic acids in soil, including benzoic acid and salicylic acid, showed significant decrease, while some other phenolic acids such as p-coumaric acid were accumulated obviously. Taken together, fallow could efficiently ameliorate the structure of soil microbial community and soil properties of P. heterophylla, and thus alleviate the effects of continuous cropping.


Assuntos
Caryophyllaceae , Microbiota , Micobioma , Bactérias/genética , Solo/química , Microbiologia do Solo
11.
Talanta ; 245: 123489, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460981

RESUMO

On-site quantitative analysis of pesticides is important for food safety. Colorimetric gold nanobipyramids (AuNBPs) sensors are powerful methods for on-site detection. However, a single quantitative method and the instability of AuNBPs in solution limit the practicability of those sensors. Here, a paper-based multicolor AuNBPs sensor involved a colorimeter-assisted method for quantifying color was developed for quantitative detection of 2,4-dichlorophenoxyacetic acid (2,4-D), a common herbicide. The novelty of this study lies in developing a general paper-based quantitative on-site method (PQOM) for colorimetric AuNBPs sensors. Firstly, a paper-based analytical device (PAD) consisting of a nylon membrane, absorbent cotton layers, and two acrylic plates was fabricated to deposit AuNBPs. We demonstrated the PAD could improve the stability of AuNBPs and the detection sensitivity of AuNBPs sensors. Then, a handheld colorimeter was first used to quantify the color change of AuNBPs on the PAD based on the CIELab color space. Finally, as proof of concept, the PQOM was successfully employed to quantify 2,4-D by combining with an alkaline phosphatase-mediated AuNBPs growth method. In this method, 2,4-D specifically inhibited alkaline phosphatase activity to suppress the generation of l-ascorbic acid, thereby mediating AuNBPs growth. The developed sensor exhibited seven 2,4-D concentration-related colors and detected as low as 50 ng mL-1 2,4-D by naked-eye observation and 18 ng mL-1 2,4-D by a colorimeter. It was applied to detect 2,4-D in the spiked rice and apple samples with good recovery rates (91.8-112.0%) and a relative standard deviation (n = 5) < 5%. The success of this study provides a sensing platform for quantifying 2,4-D on site.


Assuntos
Ouro , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Fosfatase Alcalina , Colorimetria/métodos , Corantes , Limite de Detecção
12.
Virus Res ; 313: 198742, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35283248

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteric coronavirus that causes vomiting, severe diarrhea, dehydration and death in suckling piglets. NS7a is putative accessory protein that is predicted to be encoded by SADS-CoV, but still to be confirmed experimentally. In the present study, recombinant NS7a protein was expressed in a prokaryotic expression system and used as an antigen to prepare monoclonal antibodies (mAbs) specific to NS7a protein. We obtained two anti-NS7a mAbs, termed AH5 and EH3, that were shown by western blotting to react with the natural NS7a protein in Vero E6 cells infected with SADS-CoV. Using the produced mAbs, we observed by confocal microscopy that NS7a protein was expressed in the cytoplasm. Further studies revealed that the motif 31VNTWQEFA38 was the minimal unit of the linear B-cell epitope recognized by mAb AH5, and the motif 82FDLFERF88 was the minimal unit of the linear B-cell epitope recognized by mAb EH3. Alignment of amino acids showed that these two epitopes were highly conserved among different SADS-CoV strains and SADS-related coronaviruses from bats, but with one substitution in these two motifs in bat coronavirus HKU2. In summary, we generated and characterized two mAbs against SADS-CoV NS7a protein, and demonstrated NS7a expression in SADS-CoV-infected cells for the first time.


Assuntos
Alphacoronavirus , Coronavirus , Alphacoronavirus/genética , Animais , Anticorpos Monoclonais , Mapeamento de Epitopos , Suínos
13.
Front Psychol ; 13: 835147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295390

RESUMO

In school education, teaching-learning interaction is deemed as a core process in the classroom. The fundamental neural basis underlying teaching-learning interaction is proposed to be essential for tuning learning outcomes. However, the neural basis of this process as well as the relationship between the neural dynamics and the learning outcomes are largely unclear. With non-invasive technologies such as fNIRS (functional near-infrared spectroscopy), hyperscanning techniques have been developed since the last decade and been applied to the field of educational neuroscience for simultaneous multi-brain scanning. Hyperscanning studies suggest that the interpersonal neural synchronization (INS) during teaching-learning interaction might be an ideal neural biomarker for predicting learning outcomes. To systematically evaluate such a relationship, this meta-analysis ran on a random-effects model on 16 studies with 23 independent samples (effect sizes). Further moderator analyses were also performed to examine the potential influences of the style, mode, content, and the assessment method of learning outcomes. The random-effects modeling results confirmed a robust positive correlation between INS and learning outcomes. Subsequent analyses revealed that such relationship was mainly affected by both interaction style and mode. Therefore, the present meta-analysis provided a confirmatory neurocognitive foundation for teaching-learning interaction, as well as its relation to the learning outcomes, consolidated future learning and teaching studies in various disciplines including second language education with a firm methodological reference.

14.
Indian J Microbiol ; 62(1): 1-10, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931096

RESUMO

The human gastrointestinal tract (GIT) is a well-recognized hub of microbial activities. The microbiota harboring the mucus layer of the GIT act as a defense against noxious substances, and pathogens including Clostridium difficile, Enterococcus faecium, Escherichia coli, Salmonella Typhimurium. Toxins, pathogens, and antibiotics perturb the commensal floral composition within the GIT. Imbalanced gut microbiota leads to dysbiosis, manifested as diseases ranging from obesity, diabetes, and cancer to reduced lifespan. Among the bacteria present in the gut microbiome, the most beneficial are those representing Firmicutes and Bacteroidetes. Recent studies have revealed the emergence of a novel biotherapeutic agent, Akkermansia, which is instrumental in regaining eubiosis and conferring various health benefits.

15.
Virology ; 565: 96-105, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34768113

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered enteric coronavirus. We have previously shown that the caspase-dependent FASL-mediated and mitochondrion-mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis, which facilitates viral replication. However, the roles of intracellular signaling pathways in SADS-CoV-mediated cell apoptosis and the relative advantages that such pathways confer on the host or virus remain largely unknown. In this study, we show that SADS-CoV induces the activation of ERK during infection, irrespective of viral biosynthesis. The knockdown or chemical inhibition of ERK1/2 significantly suppressed viral protein expression and viral progeny production. The inhibition of ERK activation also circumvented SADS-CoV-induced apoptosis. Taken together, these data suggest that ERK activation is important for SADS-CoV replication, and contributes to the virus-mediated changes in host cells. Our findings demonstrate the takeover of a particular host signaling mechanism by SADS-CoV and identify a potential approach to inhibiting viral spread.


Assuntos
Alphacoronavirus/fisiologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Replicação Viral , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Suínos , Células Vero , Replicação Viral/efeitos dos fármacos
16.
Vet Microbiol ; 264: 109299, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34896854

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging porcine enteric coronavirus that causes severe diarrhea in piglets and results in serious economic losses. There are no effective vaccines and antiviral drugs to prevent and treat PDCoV infection currently. Griffithsin (GRFT) is a lectin with potent antiviral activity against enveloped viruses because of its ability to specifically bind N-linked high-mannose oligosaccharides. GRFT has been reported to possess antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and porcine epidemic diarrhea virus (PEDV). Here, we first confirmed the antiviral activity of GRFT against PDCoV in vitro. The infected cells (%) and virus titers were significantly decreased at concentration 1 µg/mL or above of GRFT. Time-course experiments revealed that GRFT inhibits PDCoV infection at the adsorption and penetration step. GRFT binding to PDCoV spike (S) protein on the surface wraps the virus and blocks its entry. The outstanding antiviral potency indicates that GRFT has the potential value as a candidate drug for the prevention and treatment of PDCoV infection.


Assuntos
Deltacoronavirus , Lectinas de Plantas , Animais , Antivirais/farmacologia , Técnicas de Cultura de Células/veterinária , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Deltacoronavirus/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Suínos , Doenças dos Suínos/tratamento farmacológico
17.
J Virol ; 95(21): e0124621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379449

RESUMO

Rotaviruses are the causative agents of severe and dehydrating gastroenteritis in children, piglets, and many other young animals. They replicate their genomes and assemble double-layered particles in cytoplasmic electron-dense inclusion bodies called "viroplasms." The formation of viroplasms is reportedly associated with the stability of microtubules. Although material transport is an important function of microtubules, whether and how microtubule-based transport influences the formation of viroplasms are still unclear. Here, we demonstrate that small viroplasms move and fuse in living cells. We show that microtubule-based dynein transport affects rotavirus infection, viroplasm formation, and the assembly of transient enveloped particles (TEPs) and triple-layered particles (TLPs). The dynein intermediate chain (DIC) is shown to localize in the viroplasm and to interact directly with nonstructural protein 2 (NSP2), indicating that the DIC is responsible for connecting the viroplasm to dynein. The WD40 repeat domain of the DIC regulates the interaction between the DIC and NSP2, and the knockdown of the DIC inhibited rotaviral infection, viroplasm formation, and the assembly of TEPs and TLPs. Our findings show that rotavirus viroplasms hijack dynein transport for fusion events, required for maximal assembly of infectious viral progeny. This study provides novel insights into the intracellular transport of viroplasms, which is involved in their biogenesis. IMPORTANCE Because the viroplasm is the viral factory for rotavirus replication, viroplasm formation undoubtedly determines the effective production of progeny rotavirus. Therefore, an understanding of the virus-host interactions involved in the biogenesis of the viroplasm is critical for the future development of prophylactic and therapeutic strategies. Previous studies have reported that the formation of viroplasms is associated with the stability of microtubules, whereas little is known about its specific mechanism. Here, we demonstrate that rotavirus viroplasm formation takes advantage of microtubule-based dynein transport mediated by an interaction between NSP2 and the DIC. These findings provide new insight into the intracellular transport of viroplasms.


Assuntos
Dineínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Microtúbulos/metabolismo , Domínios Proteicos , Transporte Proteico , Suínos , Imagem com Lapso de Tempo , Montagem de Vírus , Replicação Viral
18.
Anal Chim Acta ; 1139: 59-67, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190710

RESUMO

Dithiocarbamates (DTCs) pesticides were extensively used as fungicides in a variety of crops during their growth, storage and shipment. The DTCs residue in foods will seriously harm human health. In this study, a novel multicolor colorimetric sensor was developed for visual screening of total DTCs (total of ziram, thiram and zineb) based on sulfhydryl-mediated growth of gold nanobipyramids (AuNBPs). We demonstrated that DTCs can absorb on AuNBPs seed's surface via the formation of Au-S bonds and thus impede the 8-hydroxyquinoline (8-HQ)-promoted AuNBPs growth, which generates DTCs concentration-corresponding color changes. The developed sensor has vivid color changes, short analysis time, higher sensitivity and excellent specificity. It can be used to detect as low as 50 nM of total DTCs by bare eye observation and 17-18 nM of total DTCs by UV-visible spectrometry. By using the multicolor sensor, we have successfully screened total DTCs in apple and black tea by bare eye observation, and detected total DTCs in apple and black tea by UV-visible spectrometry with a recovery of 90%-104% and a relative standard deviation (RSD, n = 5) < 5%. The results obtained with our method consisted well with those obtained with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), verifying that our method had good accuracy and reliability. Especially, the visual detection limit of our method is much lower than the maximum residue limit of total DTCs in vegetable and fruits. All above features make our sensor a promising method for rapid on-site screening of total DTCs in vegetable and fruits by only bare eye observation.


Assuntos
Resíduos de Praguicidas , Praguicidas , Colorimetria , Ouro , Humanos , Praguicidas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
19.
ACS Synth Biol ; 9(9): 2537-2545, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786356

RESUMO

Microbial contamination, especially in large-scale processes, is partly a life-or-death issue for industrial fermentation. Therefore, the aim of this research was to create an antimicrobial contamination system in Bacillus subtilis 168 (an ideal acetoin producer for its safety and acetoin synthesis potential). First, introduction of the formamidase (FmdA) from Helicobacter pylori and the phosphite dehydrogenase (PtxD) from Pseudomonas stutzeri enabled the engineered Bacillus subtilis to simultaneously assimilate formamide and phosphite as nitrogen (N) and phosphorus (P) sources. Thus, the engineered B. subtilis became the dominant population in a potentially contaminated system, while contaminated microbes were starved of key nutrients. Second, stepwise metabolic engineering via chromosome-based overexpression of the relevant glycolysis and acetoin biosynthesis genes led to a 1.12-fold increment in acetoin titer compared with the starting host. Finally, with our best acetoin producer, 25.56 g/L acetoin was synthesized in the fed-batch fermentation, with a productivity of 0.33 g/L/h and a yield of 0.37 g/g under a nonsterilized and antibiotic-free system. More importantly, our work fulfills many key criteria of sustainable chemistry since sterilization is abolished, contributing to the simplified fermentation operation with lower energy consumption and cost.


Assuntos
Acetoína/metabolismo , Amidoidrolases/genética , Anti-Infecciosos/metabolismo , Bacillus subtilis/metabolismo , NADH NADPH Oxirredutases/genética , Bacillus subtilis/genética , Técnicas de Cultura Celular por Lotes , Helicobacter pylori/enzimologia , Engenharia Metabólica , Pseudomonas stutzeri/enzimologia
20.
Enzyme Microb Technol ; 134: 109464, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044036

RESUMO

Enzyme-catalyzed cofactor regeneration is a significant approach to avoid large quantities consumption of oxidized cofactor, which is vital in a variety of bioconversion reactions. NADH: FMN oxidoreductase is an ideal regenerating enzyme because innocuous molecular oxygen is required as an oxidant. But the by-product H2O2 limits its further applications at the industrial scale. Here, novel NADH: FMN oxidoreductase (LrFOR) from Lactobacillus rhamnosus comprised of 1146 bp with a predicted molecular weight of 42 kDa was cloned and overexpressed in Escherichia coli BL21 (DE3). Enzyme assay shows that the purified recombinant LrFOR has both the NADPH and NADH oxidation activity. Biochemical characterizations suggested that LrFOR exhibits the specific activity of 39.8 U·mg-1 with the optimal pH and temperature of 5.6 and 35 °C and produces H2O instead of potentially harmful peroxide. To further study its catalytic function, a critical Thr29 residue and its six mutants were investigated. Mutants T29G, T29A, and T29D show notable enhancement in activities compared with the wild type. Molecular docking of NADH into wild type and its mutants reveal that a small size or electronegative of residue in position29 could shorten the distance of NADH and FMN, promoting the electrons transfer and resulting in the increased activity. This work reveals the pivotal role of position 29 in the catalytic function of LrFOR and provides effective catalysts in NAD+ regeneration.


Assuntos
FMN Redutase/genética , FMN Redutase/metabolismo , Lacticaseibacillus rhamnosus/enzimologia , NAD/metabolismo , Água/metabolismo , Catálise , Clonagem Molecular , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lacticaseibacillus rhamnosus/genética , Simulação de Acoplamento Molecular , Mutação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...